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Abstract — Over the last three to four years, the adoption of 

inter-device connectivity and a multitude of other ‘smart features’ 

(e.g. adaptive control and device learning) into many traditional 

embedded products has drastically increased the level of 

underlying software and hardware complexity. In parallel, 

product development timelines are rapidly reducing with a 

corresponding tightening of quality requirements, especially in 

regulated markets such as the defence, automotive and health 

sectors. As we race towards a more connected world, with an 

estimated 26.6 billion devices connected to data networks by the 

end of 2019, the responsibility lies with designers and developers 

to ensure that the highly-interconnected systems are robust, 

reliable and secure. These factors converge to push the need for 

embedded software engineers to achieve more complex outcomes 

in less time. To succeed in this challenging environment, engineers 

need to be armed with adequate tools and efficient processes. A 

common issue with all embedded systems is the complexity and 

usefulness of the development tools (both compilers and 

debuggers). In particular, if a tool is difficult to use then the 

development process can be greatly hindered rather than assisted. 

Furthermore, developers are likely to include additional code for 

debugging purposes which can negatively influence the required 

timelines and proposed functionality. A need exists for tools which 

are lightweight, effective and provide complex debugging 

capability whilst minimising development overhead. This paper 

explores the role of enhanced debugging in a complex and 

everchanging field of wireless connectivity. An emphasis is placed 

on tools which assist in the visualisation of connectivity related 

data (MQTT, Bluetooth and Wi-Fi) between multiple nodes.  

Keywords — wireless; connectivity; Bluetooth; Wi-Fi; 

complexity; security; debugging 

I.  INTRODUCTION 

In recent years there has been an exponential increase in the 
number of connected devices [1]. Due to connectivity 
requirements, the process for debugging and rigorously testing 
embedded systems is becoming increasingly more difficult and 
time consuming. Furthermore, as connectivity requirements 
increase, vulnerabilities can be introduced into production 
firmware due to the sheer system complexity. With an increase 
in system functionality, a requirement also exists for advanced 
debugging tools in complex, connected, environments.  

Whether these devices are connected within the home, or 
form part of industrial infrastructure, the user places a significant 
amount of trust that these systems are performing as designed 
and not running with tampered firmware. A typical use-case 
scenario is a residential environment with several devices 
forming a network (whether wired or wireless) that ultimately 
gain access to internet. As soon as such systems have the ability 
to reach other connected devices there are substantial issues 
around device security. As shown with the Mirai Botnet Attack 
[2], a PC infected with malware will attempt to breach known 
‘Internet of Things’ (IoT) devices with default usernames and 
passwords. Once compromised, such systems are capable of 
launching attacks from basic Denial of Service (DoS) up to 
targeted attempts with the intention of breaching larger security 
systems. In this case it was due to known username and 
passwords being shipped with devices, which by default an end-
user should be required to update as part of an installation / 
configuration process.  

Security issues are further exacerbated with systems that 
allow firmware to be remotely deployed. Trends have increased 
in the number of systems that allow firmware to be updated via 
'Over-The-Air (OTA)' techniques [3]. These systems can 
operate in two basic modes, with either the client or server 
(manufacturer) requesting (or pushing) an update to a target 
device. To minimise unwanted tampering with the firmware 
image, developers can certainly incorporate features such as 
encryption. However, the complexity of such features are 
constrained by the processing capacity of the microcontroller 
receiving the update. Furthermore, it is quite possible that even 
though the firmware is being sent by a trusted manufacturer, a 
'man-in-the-middle' approach could be used to intercept the 
image, corrupt it for the benefit of an attacker and then redeploy 
to the remainder of network. This can be quite readily achieved 
in systems where two-way communication is not performed 
such as in firmware updates for devices using the terrestrial 
television network. A networked consumer electronic product, 
such as a Digital Video Recorder, could be compromised within 
the confines of a residence and then launch a DoS attack to either 
all devices within the local network or on a much larger scale 
[4]. Although the compromised device may no longer be 
recoverable, all of the other devices on the network must be 
secure enough to ensure that the damage is minimised. 
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Comparable examples exist within industrial networks with the 
potential for more serious consequences. 

Although the examples given are relatively simplistic, they 
highlight the need for robust environment for debugging traffic 
that is transmitted over wireless interfaces. To date, silicon 
vendors (such as Marvell, Texas Instruments or Realtek) only 
supply a firmware image to use on their own devices which then 
communicate over the chosen interface to the remainder of the 
embedded hardware which is typically via UART, SDIO or SPI. 
For the end-user, APIs are not available and hence systems that 
incorporate hardware from such vendors are reliant upon the 
device manufacturer. In mission-critical applications such as, for 
example, control systems managing commercial Unmanned 
Aerial Vehicles (UAVs) or medical implantable devices such as 
a pacemaker, the inability to rigorously validate the behaviour 
of manufacturer firmware and protocol software (and hence the 
underlying device performance) leaves a substantial gap in the 
security analysis of a potential product. 

In this paper we discuss and demonstrate the role of 
debugging tools in the analysis of wireless (Wi-Fi) traffic. An 
emphasis is placed on the benefits of modern debugging tools 
versus more traditional techniques. Furthermore, it is 
demonstrated that modern wireless debugging tools can be used 
to identify infrequent errors with relative ease, thereby greatly 
reducing the development time. 

II. BACKGROUND 

As previously mentioned, with an increase in the number of 

connected devices a corresponding increase has occurred in the 

amount of data being transmitted to a central node. Fig. 1 

provides a simple example of three remote nodes 

communicating back to a central server / gateway. With an 

increasing trend towards large-scale sensor networks, mesh 

technologies can be utilized to allow remote nodes (Node 1 in 

Fig. 1) to communicate back to the central gateway using, for 

example, Node 2 as a proxy. Furthermore, the deployment of 

mesh topologies increases the complexity of debugging as 

nodes may not be directly accessible from the gateway. 

Lightweight protocols such as IPv6 over Low-Power 

Wireless Personal Area Networks (6LowPan), Constrained 

Application Protocol (CoAP) and Message Queuing Telemetry 

Transport (MQTT) are typically included in low-powered IoT 

systems to transmit low-rate sensor data [5]. However, as the 

number of remote nodes increases, the throughput requirement 

for the central node naturally increases. A further restriction 

may be based around location and/or device placement where it 

may not be feasible to use traditional wired networks to transfer 

large amounts of data for further processing. 
To simplify connectivity requirements, it is possible to 

employ existing technologies such as Bluetooth or Wi-Fi. 
Although suitable for bulk data transmission, several issues exist 
around the transmission and debugging of such wireless 
interfaces. For simplicity a PC can be used to perform the 
wireless data transmission, however, as their processing power 
has been increasing at a rapid rate, high-end embedded 
processors can now replace a PC at a fraction of the cost. A 
drawback of replacing traditional PC hardware with an 
embedded processor is that the interface drivers generally need 

to be redeveloped (including debugging and verification) which 

can significantly increase the overall development time. 

 

From a developer perspective, the increase in system 
complexity with reduced production timelines requires tools that 
allow faults to be diagnosed quickly and efficiently. 
Traditionally, wireless interfaces have been debugged using 
tools such as terminal dumps, oscilloscope captures and logic 
analysers. However, these techniques are generally cumbersome 
and can often misdiagnose intermittent errors. A review of 
existing wireless interface debugging tools are further discussed 
in Sections III and IV.  

The issues around preproduction development are similar 
but with the added limitations of smaller budgets and lower 
volumes which can easily result in a situation where less vendor 
support is available, and/or the use of open-source software is 
necessary. These restrictions can lead to errors (or assumptions) 
in the underlying drivers being propagated into the 
preproduction project. Furthermore, in code based on open-
source drivers the vulnerabilities are well known and can be 
exploited.  

III. STANDARD DEBUGGING TOOLS 

Whilst the development tools for embedded systems have 
improved significantly over the last three to five years, 
traditionally the choices in the realm of wireless systems have 
been limited. While most commercial systems can be 
emulated/simulated with relative ease, there are often issues 
around the simulation of dedicated ICs. Although an idealised 
model of external hardware can be scripted, this is often not 
feasible when an actual target is available, particularly when 
dealing with unexpected inputs. While that is not to say that 
software simulators are irrelevant, they can often miss core 
functionality when the physical hardware is available. Hardware 
level debugging of embedded systems has typically relied on the 
use of logic analysers (with protocol decode capability) or 
oscilloscopes. Furthermore, once realised, JTAG can be used to 
provide debug capability as well as upgrade the underlying 
firmware. 

Fig. 1. Simplified Sensor Network 
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To determine the performance of wireless systems, there are 
many alternate software simulation platforms. Bluetooth can be 
simulated using Message Sequence Charts, and tools such as 
OPNET can be used to simulate physical networks. However, 
given the often-complex nature of wireless networks it is often 
difficult to compensate for packet loss, environmental 
conditions, let alone simulate security breaches. To that end, 
hardware level tools need to be incorporated as a core part of the 
development and verification chain. One such technique for 
analysing wireless systems is the use of a PC platform (with 
customised packet-sniffing software) however a link then needs 
to exist between the embedded and the wireless debugging 
systems. In a mesh network (where systems relay traffic to other 
nodes) the packet-sniffing approach falls drastically short as 
traffic between intermediate nodes that are out of range of the 
central broadcast node (or data sink) can be lost using traditional 
packet inspection methods. It is these nodes in the distributed 
network that are the most vulnerable to an attack and hence can 
compromise the security and stability of the rest of the network.  

IV. CASE STUDY 

To illustrate the benefits of enhanced wireless debugging 
tools, the remainder of this paper will focus on the analysis of a 
complex scenario in which a gateway has been set up to 
simultaneously run a Wi-Fi Access Point (AP) and Station 
(STA) as well as Bluetooth Low Energy. Data is transmitted 
from a standard sensor (Texas Instruments Sensor Tag) over 
Bluetooth to the gateway device. An Android device using the 
MQTT protocol is used to receive the sensor data via the 
Internet. 

 

 

Fig. 2 demonstrates the setup for this study. The gateway, 
comprising a Koala Evaluation Module (EVM) - Clarinox 
Technologies, routinely transmits data to a broker running on 
Amazon AWS (Web Services) via a standard access point. In 
this use-case the Koala EVM runs as in Wi-Fi STA mode and 
the access point as AP. The Koala EVM simultaneously runs in 
AP role to enable provisioning and interaction with a standard 
4G modem (which connects in STA role). The software block 
diagram is shown in Fig. 3. This shows the wireless radio, 
RTOS, ClarinoxSoftFrame, ClarinoxWiFi AP and STA and 
ClarinoxBlue BLE stack. 

 

Fig. 2. Structure of Typical MQTT Environment 

 

 

Fig. 3. Software Stack 
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MQTT is used extensively in IoT devices and is based 
around a publish/subscribe model where sensor nodes routinely 
transmit data over Wi-Fi to a Broker service. Data from the 
sensor node consists of topics, to which a client (end-user) can 
subscribe. In the case of an environmental sensor, the loss (or 
corruption) of data may be nothing more than an inconvenience. 
However, in the case of telemetry for a UAV such corruption 
could result in significant damage, if not worse. 

One potential vulnerability in MQTT is that the protocol 
allows devices to directly communicate with one another (as 
opposed to only via the central broker). Although the sensor 
node may be configured to only push data to the broker (in this 
case, Amazon Web Services), the broker can still send data back 
to the sensor node. If a vulnerability exists in the processing of 
data from the broker, then it is possible that the sensor node can 
be compromised and hence information such as account 
credentials can be easily obtained. 

As previously discussed, with a push to reduce costs, many 
embedded developers rely on the use of open-source software 
stacks. While appearing to reduce costs, there is often no simple 
method in which the entire stack might be examined, both in 
terms of functionality as well as suitability for a given project. 
Although many stacks contain additional features that can be 
disabled with pre-processor directives, this requires developer 
time to sift through thousands of lines of source code, potentially 
prolonging development timelines compared to the use of 
commercial software. Furthermore, if the developers have not 
written the software themselves (or received the source code 
from a trusted partner), there is no guarantee that the resulting 
stack will function correctly, let alone contain sufficient security 
to minimise the possibility of an attack. It is only via inspection 
of the data transmitted (whether by wired or wireless means) that 
the true behaviour of the software stack can be determined and 
verified. For wired systems, standard debugging techniques 
(such as logic analysers/protocol analysis) can be used, however 
the wireless domain is considerably more complex.  

In terms of the underlying MQTT protocol there are several 
open-source clients that can be deployed on embedded 
hardware. While lightweight versions are commonly available 
for low-power embedded hardware, such as the ATmega328, 
these are generally dependent on specific constrained consumer-
level networking hardware. The other related issue is that the 
lightweight versions may not incorporate core security protocols 
such as SSL / TLS and Quality of Service (QoS) features. In the 
mainstream market, IBM has produced a C-based client which 
can be ported to embedded systems. This particular MQTT stack 
has been validated by Clarinox Technologies. 

Before delving into the development tools, there are several 
important concepts that must be understood when writing 
applications based on MQTT. As previously mentioned, MQTT 
operates on a publish / subscribe model. Information that is to be 
transmitted to another device is published to a broker and the 
client (or receiving device) subscribes to that particular piece of 
information which is known as a topic. After a successful 
connection to the broker, the sensor node subscribes to a variety 
of topics.  

Figures 4 and 5 demonstrates the concept. Here the Koala 
EVM subscribes to one topic (garden/irrigation) and publishes 

another known as local/sensor. For simplicity an Android tablet 
using MQTT Dashboard is used as another node in the network. 
Both devices are connected to the broker using a Wi-Fi 
connection via the Internet. Although this example includes two 
nodes, a typical sensor network may contain thousands of 
remote devices all attempting to communicate via one gateway 
to a given broker, which obviously produces significant traffic.  

The difficulty in developing firmware for such systems is the 
ability to accurately intercept the network packets (whether 
Bluetooth or Wi-Fi) and confirm that the MQTT stack (and 
indeed the core firmware) is operating as expected. Moreover, if 
intermediate nodes are present the task becomes increasingly 
more complex. The increase in complexity and the reduced time-
to-market necessitates the development of advanced debugging 
tools which whilst simple to use, provide a rich feature-set that 
can be used for both on- and offline debugging.  

Traditionally, to debug network traffic several alternative 
approaches have been used. The most common is to write the 
packet contents to the debug console and then decode them 
manually. Although being a time-tested technique, as a manual 
process it is prone to error and might not highlight the relevant 
problems with the implementation. 

Ideally, a network debugger should be capable of: 
interfacing directly with the sensor node software stack to 
decode packets over the Wi-Fi network with limited CPU 
overhead to capture the MQTT payload. An example of such a 
tool is the ClariFi debugger. Fig. 4 provides a snapshot of the 
ClariFi debugger output during a live trace of an MQTT 
subscribe request (Note that other fields have been minimised 
for readability). 

 

In a typical use-case, the trace buffer would be used to 
manually decode the subscription message. From Fig. 4, the 
actual MQTT packet begins at byte 73 (0x82) with the preceding 
data containing the standard TCP/IP fields such as Source / 
Destination addresses and ports, Time-to-Live and sequence 
numbers. With the packet successfully captured, it can either be 
exported using the inbuilt Lua interpreter, or alternatively 
decoded using the message viewer as per Fig 5. 

 
Fig. 5. MQTT Subscribe Packet Decode 

 

Fig. 4. MQTT Subscribe Packet Capture 
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In a similar fashion, the same tools can be used to verify data 
published to the broker from the sensor-node. In this instance, 
the value of 0x31 was sent to the broker (and hence the Android 
Tablet) and displayed. The corresponding packet trace and 
decode appears in Fig. 6 and 7 respectively. Note that the packet 
decode (Fig. 7) displays the message payload in plain-text rather 
than in hexadecimal. 

 

 

 

In the previous examples the MQTT communication was 
successful and contained no errors. The benefits of the 
debugging platform can be evaluated by the ability to determine 
the difference between errors and actual network traffic. Using 
scripting support, Fig 8. depicts the output of the debugger when 
a packet is unable to reach a destination. The actual packet trace 
is highlighted to quickly and efficiently indicate to the developer 
than an error has occurred and needs to be addressed. 

  

Whilst the examples given demonstrate the basic 
functionality of the IBM MQTT stack, such a complex system 
can hardly be debugged by only analyzing the MQTT events. In 
real life, such a system will produce many problems related with 
the underlying connectivity stacks (i.e. Wi-Fi and Bluetooth), 
Real-Time Operating System (RTOS) related functionality, 
memory usage problems, TCP/IP stack tuning problems. In 
addition to these at an early phase of the development, more 
hardware interface (e.g. device driver related) issues will 
generally be present. The use of multi-core advanced CPUs 
introduce more complex driver issues such as caching issues – 
cache coherency. 

Further analysis of the example MQTT gateway application, 
we see that simultaneous use of Bluetooth and Wi-Fi 
technologies, in addition to MQTT, will pose many potential 
problems during the development. When these issues occur one 

at a time, the traditional tools are sufficient to identify and fix 
those. However often multiple problems manifest themselves in 
totally different forms than if they would appear in isolation. 
Such problems require a more structured approach to identify 
and remedy.   

If the debugging tools do not readily present the information 
to assist the developers, then there is often the required to delve 
into a time-consuming exercise to understand the details of the 
Bluetooth and Wi-Fi technology. As an example, if the Wi-Fi 
driver is overloading the CPU, causing some of the critical 
Bluetooth Low Energy sensor reading to be missed, then we are 
not only looking for a programming logic error, but also a 
potential tuning problem. In such a case a deep understanding of 
the protocol is necessary to uncover the fact that packets are 
missing. An efficient approach is to take the collected logs and 
perform post processing to programmatically identify the issue. 
Such post processing of the collected Wi-Fi and Bluetooth 
protocol logs may assist figuring out when/why the overloading 
is occurring, significantly more quickly than manual methods. 
In addition to being faster, such programmatic methods also 
have the advantage to be repeatable and more suitable for quality 
procedures. 

Essentially debugging can be performed via a number of 
tools such as the Integrated Development Environment (IDE), 
terminal dump, oscilloscope, protocol analyser, air sniffer or 
software specific debugger. Each has its place in the engineer’s 
toolkit. A comparison of these tools is provided in Table I.  

Whilst the examples given demonstrate the basic 
functionality of the IBM MQTT stack, the benefits of advanced 
debugging tools have been clearly demonstrated. The use of 
such debugging tools can significantly accelerate the 
debugging/release cycles by providing developers with the 
necessary interfaces to quickly, efficiently and concisely verify 
their firmware images over complex wireless networks. 

 

 

Fig. 7. MQTT Publish Packet Decode 

 

Fig. 6. MQTT Publish Packet Capture 

 

 

 

Fig. 8. ICMP Packet Transmit Faulture 

 

 



TABLE I.  DEBUGGER CHARACTERISTICS 
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✓ x x x x ✓ 
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display 
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Price 
Med Low Med High VHigh Med 

Engineering 
Time 

Med VHigh High Med Low Low 

Does not 
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other tools  

to convert  
e.g. 

Wireshark 

x x x ✓ ✓ ✓ 

V. CONCLUSION 

In this paper an introduction to the need for advanced 
debugging tools in complex wireless environments has been 
given. It has been shown that such tools provide the ability to 
debug wireless interfaces which are typical of current trends in 
connected hardware. By providing developers with efficient 
tools, the time-to-market can be significantly reduced, and 
robustness and security increased, thereby providing an edge in 
a highly-competitive consumer market. 
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