
www.embedded-world.eu

Connectivity, Complexity and
the Role of Enhanced Debugging

Glenn I. Matthews

School of Engineering (Electrical and Biomedical)

RMIT University

Melbourne, Australia

glenn.matthews@rmit.edu.au

Trish Messiter; Gokhan Tanyeri

Clarinox Technologies Pty Ltd

Melbourne, Australia

trish@clarinox.com;

gokhan@clarinox.com

Abstract — Over the last three to four years, the adoption of

inter-device connectivity and a multitude of other ‘smart features’

(e.g. adaptive control and device learning) into many traditional

embedded products has drastically increased the level of

underlying software and hardware complexity. In parallel,

product development timelines are rapidly reducing with a

corresponding tightening of quality requirements, especially in

regulated markets such as the defence, automotive and health

sectors. As we race towards a more connected world, with an

estimated 26.6 billion devices connected to data networks by the

end of 2019, the responsibility lies with designers and developers

to ensure that the highly-interconnected systems are robust,

reliable and secure. These factors converge to push the need for

embedded software engineers to achieve more complex outcomes

in less time. To succeed in this challenging environment, engineers

need to be armed with adequate tools and efficient processes. A

common issue with all embedded systems is the complexity and

usefulness of the development tools (both compilers and

debuggers). In particular, if a tool is difficult to use then the

development process can be greatly hindered rather than assisted.

Furthermore, developers are likely to include additional code for

debugging purposes which can negatively influence the required

timelines and proposed functionality. A need exists for tools which

are lightweight, effective and provide complex debugging

capability whilst minimising development overhead. This paper

explores the role of enhanced debugging in a complex and

everchanging field of wireless connectivity. An emphasis is placed

on tools which assist in the visualisation of connectivity related

data (MQTT, Bluetooth and Wi-Fi) between multiple nodes.

Keywords — wireless; connectivity; Bluetooth; Wi-Fi;

complexity; security; debugging

I. INTRODUCTION

In recent years there has been an exponential increase in the
number of connected devices [1]. Due to connectivity
requirements, the process for debugging and rigorously testing
embedded systems is becoming increasingly more difficult and
time consuming. Furthermore, as connectivity requirements
increase, vulnerabilities can be introduced into production
firmware due to the sheer system complexity. With an increase
in system functionality, a requirement also exists for advanced
debugging tools in complex, connected, environments.

Whether these devices are connected within the home, or
form part of industrial infrastructure, the user places a significant
amount of trust that these systems are performing as designed
and not running with tampered firmware. A typical use-case
scenario is a residential environment with several devices
forming a network (whether wired or wireless) that ultimately
gain access to internet. As soon as such systems have the ability
to reach other connected devices there are substantial issues
around device security. As shown with the Mirai Botnet Attack
[2], a PC infected with malware will attempt to breach known
‘Internet of Things’ (IoT) devices with default usernames and
passwords. Once compromised, such systems are capable of
launching attacks from basic Denial of Service (DoS) up to
targeted attempts with the intention of breaching larger security
systems. In this case it was due to known username and
passwords being shipped with devices, which by default an end-
user should be required to update as part of an installation /
configuration process.

Security issues are further exacerbated with systems that
allow firmware to be remotely deployed. Trends have increased
in the number of systems that allow firmware to be updated via
'Over-The-Air (OTA)' techniques [3]. These systems can
operate in two basic modes, with either the client or server
(manufacturer) requesting (or pushing) an update to a target
device. To minimise unwanted tampering with the firmware
image, developers can certainly incorporate features such as
encryption. However, the complexity of such features are
constrained by the processing capacity of the microcontroller
receiving the update. Furthermore, it is quite possible that even
though the firmware is being sent by a trusted manufacturer, a
'man-in-the-middle' approach could be used to intercept the
image, corrupt it for the benefit of an attacker and then redeploy
to the remainder of network. This can be quite readily achieved
in systems where two-way communication is not performed
such as in firmware updates for devices using the terrestrial
television network. A networked consumer electronic product,
such as a Digital Video Recorder, could be compromised within
the confines of a residence and then launch a DoS attack to either
all devices within the local network or on a much larger scale
[4]. Although the compromised device may no longer be
recoverable, all of the other devices on the network must be
secure enough to ensure that the damage is minimised.

mailto:firstname@clarinox.com

Comparable examples exist within industrial networks with the
potential for more serious consequences.

Although the examples given are relatively simplistic, they
highlight the need for robust environment for debugging traffic
that is transmitted over wireless interfaces. To date, silicon
vendors (such as Marvell, Texas Instruments or Realtek) only
supply a firmware image to use on their own devices which then
communicate over the chosen interface to the remainder of the
embedded hardware which is typically via UART, SDIO or SPI.
For the end-user, APIs are not available and hence systems that
incorporate hardware from such vendors are reliant upon the
device manufacturer. In mission-critical applications such as, for
example, control systems managing commercial Unmanned
Aerial Vehicles (UAVs) or medical implantable devices such as
a pacemaker, the inability to rigorously validate the behaviour
of manufacturer firmware and protocol software (and hence the
underlying device performance) leaves a substantial gap in the
security analysis of a potential product.

In this paper we discuss and demonstrate the role of
debugging tools in the analysis of wireless (Wi-Fi) traffic. An
emphasis is placed on the benefits of modern debugging tools
versus more traditional techniques. Furthermore, it is
demonstrated that modern wireless debugging tools can be used
to identify infrequent errors with relative ease, thereby greatly
reducing the development time.

II. BACKGROUND

As previously mentioned, with an increase in the number of

connected devices a corresponding increase has occurred in the

amount of data being transmitted to a central node. Fig. 1

provides a simple example of three remote nodes

communicating back to a central server / gateway. With an

increasing trend towards large-scale sensor networks, mesh

technologies can be utilized to allow remote nodes (Node 1 in

Fig. 1) to communicate back to the central gateway using, for

example, Node 2 as a proxy. Furthermore, the deployment of

mesh topologies increases the complexity of debugging as

nodes may not be directly accessible from the gateway.

Lightweight protocols such as IPv6 over Low-Power

Wireless Personal Area Networks (6LowPan), Constrained

Application Protocol (CoAP) and Message Queuing Telemetry

Transport (MQTT) are typically included in low-powered IoT

systems to transmit low-rate sensor data [5]. However, as the

number of remote nodes increases, the throughput requirement

for the central node naturally increases. A further restriction

may be based around location and/or device placement where it

may not be feasible to use traditional wired networks to transfer

large amounts of data for further processing.
To simplify connectivity requirements, it is possible to

employ existing technologies such as Bluetooth or Wi-Fi.
Although suitable for bulk data transmission, several issues exist
around the transmission and debugging of such wireless
interfaces. For simplicity a PC can be used to perform the
wireless data transmission, however, as their processing power
has been increasing at a rapid rate, high-end embedded
processors can now replace a PC at a fraction of the cost. A
drawback of replacing traditional PC hardware with an
embedded processor is that the interface drivers generally need

to be redeveloped (including debugging and verification) which

can significantly increase the overall development time.

From a developer perspective, the increase in system
complexity with reduced production timelines requires tools that
allow faults to be diagnosed quickly and efficiently.
Traditionally, wireless interfaces have been debugged using
tools such as terminal dumps, oscilloscope captures and logic
analysers. However, these techniques are generally cumbersome
and can often misdiagnose intermittent errors. A review of
existing wireless interface debugging tools are further discussed
in Sections III and IV.

The issues around preproduction development are similar
but with the added limitations of smaller budgets and lower
volumes which can easily result in a situation where less vendor
support is available, and/or the use of open-source software is
necessary. These restrictions can lead to errors (or assumptions)
in the underlying drivers being propagated into the
preproduction project. Furthermore, in code based on open-
source drivers the vulnerabilities are well known and can be
exploited.

III. STANDARD DEBUGGING TOOLS

Whilst the development tools for embedded systems have
improved significantly over the last three to five years,
traditionally the choices in the realm of wireless systems have
been limited. While most commercial systems can be
emulated/simulated with relative ease, there are often issues
around the simulation of dedicated ICs. Although an idealised
model of external hardware can be scripted, this is often not
feasible when an actual target is available, particularly when
dealing with unexpected inputs. While that is not to say that
software simulators are irrelevant, they can often miss core
functionality when the physical hardware is available. Hardware
level debugging of embedded systems has typically relied on the
use of logic analysers (with protocol decode capability) or
oscilloscopes. Furthermore, once realised, JTAG can be used to
provide debug capability as well as upgrade the underlying
firmware.

Fig. 1. Simplified Sensor Network

www.embedded-world.eu

To determine the performance of wireless systems, there are
many alternate software simulation platforms. Bluetooth can be
simulated using Message Sequence Charts, and tools such as
OPNET can be used to simulate physical networks. However,
given the often-complex nature of wireless networks it is often
difficult to compensate for packet loss, environmental
conditions, let alone simulate security breaches. To that end,
hardware level tools need to be incorporated as a core part of the
development and verification chain. One such technique for
analysing wireless systems is the use of a PC platform (with
customised packet-sniffing software) however a link then needs
to exist between the embedded and the wireless debugging
systems. In a mesh network (where systems relay traffic to other
nodes) the packet-sniffing approach falls drastically short as
traffic between intermediate nodes that are out of range of the
central broadcast node (or data sink) can be lost using traditional
packet inspection methods. It is these nodes in the distributed
network that are the most vulnerable to an attack and hence can
compromise the security and stability of the rest of the network.

IV. CASE STUDY

To illustrate the benefits of enhanced wireless debugging
tools, the remainder of this paper will focus on the analysis of a
complex scenario in which a gateway has been set up to
simultaneously run a Wi-Fi Access Point (AP) and Station
(STA) as well as Bluetooth Low Energy. Data is transmitted
from a standard sensor (Texas Instruments Sensor Tag) over
Bluetooth to the gateway device. An Android device using the
MQTT protocol is used to receive the sensor data via the
Internet.

Fig. 2 demonstrates the setup for this study. The gateway,
comprising a Koala Evaluation Module (EVM) - Clarinox
Technologies, routinely transmits data to a broker running on
Amazon AWS (Web Services) via a standard access point. In
this use-case the Koala EVM runs as in Wi-Fi STA mode and
the access point as AP. The Koala EVM simultaneously runs in
AP role to enable provisioning and interaction with a standard
4G modem (which connects in STA role). The software block
diagram is shown in Fig. 3. This shows the wireless radio,
RTOS, ClarinoxSoftFrame, ClarinoxWiFi AP and STA and
ClarinoxBlue BLE stack.

Fig. 2. Structure of Typical MQTT Environment

Fig. 3. Software Stack

RTOS

Clarinox SoftFrame

MQTT Cloud Access
Application

T
C

P
/I

P
 S

ta
ck

N
e

tw
o

rk
 S

ta
ck

 I
n

te
rf

ac
e

Transport Interface Debugger Interface

BSP Interface

RTOS / SoftFrame
Interface

U
A

R
T

 ,J
TA

G
o

r
Et

h
e

rn
e

t

SD
IO

,
SP

I
o

r
U

S
B

So
ck

e
t

I/
F

A
P

I

Network Packets

P
h

y
si

ca
l

I/
F

P
h

y
si

ca
l

I/
F

Clarinox
Debugger

Wi-Fi Radio

Call-back
Functions

Chip Drivers

U
A

R
T

 ,J
TA

G
o

r
Et

h
e

rn
e

t

SD
IO

,
SP

I
o

r
U

S
B

ClarinoxWiFi & ClarinoxBlue API

Clarinox WLAN Supplicant

AP Station P2P WPS

WLAN Chip Driver

Clarinox Bluetooth
Protocols

HCI & Transport
Interface

Clarinox Bluetooth
Profiles

U
A

R
T

, S
D

IO
, S

P
I

o
r

U
SB

P
h

y
si

ca
l

I/
F

Bluetooth Radio

C
la

ri
n

o
x

S
o

ft
Fr

am
e

U
A

R
T

, S
D

IO
, S

P
I

o
r

U
SB

Socket
Application

MQTT is used extensively in IoT devices and is based
around a publish/subscribe model where sensor nodes routinely
transmit data over Wi-Fi to a Broker service. Data from the
sensor node consists of topics, to which a client (end-user) can
subscribe. In the case of an environmental sensor, the loss (or
corruption) of data may be nothing more than an inconvenience.
However, in the case of telemetry for a UAV such corruption
could result in significant damage, if not worse.

One potential vulnerability in MQTT is that the protocol
allows devices to directly communicate with one another (as
opposed to only via the central broker). Although the sensor
node may be configured to only push data to the broker (in this
case, Amazon Web Services), the broker can still send data back
to the sensor node. If a vulnerability exists in the processing of
data from the broker, then it is possible that the sensor node can
be compromised and hence information such as account
credentials can be easily obtained.

As previously discussed, with a push to reduce costs, many
embedded developers rely on the use of open-source software
stacks. While appearing to reduce costs, there is often no simple
method in which the entire stack might be examined, both in
terms of functionality as well as suitability for a given project.
Although many stacks contain additional features that can be
disabled with pre-processor directives, this requires developer
time to sift through thousands of lines of source code, potentially
prolonging development timelines compared to the use of
commercial software. Furthermore, if the developers have not
written the software themselves (or received the source code
from a trusted partner), there is no guarantee that the resulting
stack will function correctly, let alone contain sufficient security
to minimise the possibility of an attack. It is only via inspection
of the data transmitted (whether by wired or wireless means) that
the true behaviour of the software stack can be determined and
verified. For wired systems, standard debugging techniques
(such as logic analysers/protocol analysis) can be used, however
the wireless domain is considerably more complex.

In terms of the underlying MQTT protocol there are several
open-source clients that can be deployed on embedded
hardware. While lightweight versions are commonly available
for low-power embedded hardware, such as the ATmega328,
these are generally dependent on specific constrained consumer-
level networking hardware. The other related issue is that the
lightweight versions may not incorporate core security protocols
such as SSL / TLS and Quality of Service (QoS) features. In the
mainstream market, IBM has produced a C-based client which
can be ported to embedded systems. This particular MQTT stack
has been validated by Clarinox Technologies.

Before delving into the development tools, there are several
important concepts that must be understood when writing
applications based on MQTT. As previously mentioned, MQTT
operates on a publish / subscribe model. Information that is to be
transmitted to another device is published to a broker and the
client (or receiving device) subscribes to that particular piece of
information which is known as a topic. After a successful
connection to the broker, the sensor node subscribes to a variety
of topics.

Figures 4 and 5 demonstrates the concept. Here the Koala
EVM subscribes to one topic (garden/irrigation) and publishes

another known as local/sensor. For simplicity an Android tablet
using MQTT Dashboard is used as another node in the network.
Both devices are connected to the broker using a Wi-Fi
connection via the Internet. Although this example includes two
nodes, a typical sensor network may contain thousands of
remote devices all attempting to communicate via one gateway
to a given broker, which obviously produces significant traffic.

The difficulty in developing firmware for such systems is the
ability to accurately intercept the network packets (whether
Bluetooth or Wi-Fi) and confirm that the MQTT stack (and
indeed the core firmware) is operating as expected. Moreover, if
intermediate nodes are present the task becomes increasingly
more complex. The increase in complexity and the reduced time-
to-market necessitates the development of advanced debugging
tools which whilst simple to use, provide a rich feature-set that
can be used for both on- and offline debugging.

Traditionally, to debug network traffic several alternative
approaches have been used. The most common is to write the
packet contents to the debug console and then decode them
manually. Although being a time-tested technique, as a manual
process it is prone to error and might not highlight the relevant
problems with the implementation.

Ideally, a network debugger should be capable of:
interfacing directly with the sensor node software stack to
decode packets over the Wi-Fi network with limited CPU
overhead to capture the MQTT payload. An example of such a
tool is the ClariFi debugger. Fig. 4 provides a snapshot of the
ClariFi debugger output during a live trace of an MQTT
subscribe request (Note that other fields have been minimised
for readability).

In a typical use-case, the trace buffer would be used to
manually decode the subscription message. From Fig. 4, the
actual MQTT packet begins at byte 73 (0x82) with the preceding
data containing the standard TCP/IP fields such as Source /
Destination addresses and ports, Time-to-Live and sequence
numbers. With the packet successfully captured, it can either be
exported using the inbuilt Lua interpreter, or alternatively
decoded using the message viewer as per Fig 5.

Fig. 5. MQTT Subscribe Packet Decode

Fig. 4. MQTT Subscribe Packet Capture

www.embedded-world.eu

In a similar fashion, the same tools can be used to verify data
published to the broker from the sensor-node. In this instance,
the value of 0x31 was sent to the broker (and hence the Android
Tablet) and displayed. The corresponding packet trace and
decode appears in Fig. 6 and 7 respectively. Note that the packet
decode (Fig. 7) displays the message payload in plain-text rather
than in hexadecimal.

In the previous examples the MQTT communication was
successful and contained no errors. The benefits of the
debugging platform can be evaluated by the ability to determine
the difference between errors and actual network traffic. Using
scripting support, Fig 8. depicts the output of the debugger when
a packet is unable to reach a destination. The actual packet trace
is highlighted to quickly and efficiently indicate to the developer
than an error has occurred and needs to be addressed.

Whilst the examples given demonstrate the basic
functionality of the IBM MQTT stack, such a complex system
can hardly be debugged by only analyzing the MQTT events. In
real life, such a system will produce many problems related with
the underlying connectivity stacks (i.e. Wi-Fi and Bluetooth),
Real-Time Operating System (RTOS) related functionality,
memory usage problems, TCP/IP stack tuning problems. In
addition to these at an early phase of the development, more
hardware interface (e.g. device driver related) issues will
generally be present. The use of multi-core advanced CPUs
introduce more complex driver issues such as caching issues –
cache coherency.

Further analysis of the example MQTT gateway application,
we see that simultaneous use of Bluetooth and Wi-Fi
technologies, in addition to MQTT, will pose many potential
problems during the development. When these issues occur one

at a time, the traditional tools are sufficient to identify and fix
those. However often multiple problems manifest themselves in
totally different forms than if they would appear in isolation.
Such problems require a more structured approach to identify
and remedy.

If the debugging tools do not readily present the information
to assist the developers, then there is often the required to delve
into a time-consuming exercise to understand the details of the
Bluetooth and Wi-Fi technology. As an example, if the Wi-Fi
driver is overloading the CPU, causing some of the critical
Bluetooth Low Energy sensor reading to be missed, then we are
not only looking for a programming logic error, but also a
potential tuning problem. In such a case a deep understanding of
the protocol is necessary to uncover the fact that packets are
missing. An efficient approach is to take the collected logs and
perform post processing to programmatically identify the issue.
Such post processing of the collected Wi-Fi and Bluetooth
protocol logs may assist figuring out when/why the overloading
is occurring, significantly more quickly than manual methods.
In addition to being faster, such programmatic methods also
have the advantage to be repeatable and more suitable for quality
procedures.

Essentially debugging can be performed via a number of
tools such as the Integrated Development Environment (IDE),
terminal dump, oscilloscope, protocol analyser, air sniffer or
software specific debugger. Each has its place in the engineer’s
toolkit. A comparison of these tools is provided in Table I.

Whilst the examples given demonstrate the basic
functionality of the IBM MQTT stack, the benefits of advanced
debugging tools have been clearly demonstrated. The use of
such debugging tools can significantly accelerate the
debugging/release cycles by providing developers with the
necessary interfaces to quickly, efficiently and concisely verify
their firmware images over complex wireless networks.

Fig. 7. MQTT Publish Packet Decode

Fig. 6. MQTT Publish Packet Capture

Fig. 8. ICMP Packet Transmit Faulture

TABLE I. DEBUGGER CHARACTERISTICS

C
h

a
ra

c
te

r
is

ti
c
s

/

F
e
a

tu
re

ID
E

T
e
rm

in
a

l
D

u
m

p

O
sc

il
lo

sc
o

p
e

P
r
o

to
co

l

A
n

a
ly

se
r

A
ir

 S
n

if
fe

r

C
la

ri
F

i

Plain

text
display

✓ ✓ x x ✓ ✓

Graphical

display
x x ✓ ✓ ✓ x

RTOS

event

display

✓ ✓ x x x ✓

Easily
relatable

to
other

 system

events

✓ x x x x ✓

Realtime
display

/ Realtime

process

x/ x ✓/x ✓/x ✓/✓ ✓/✓ ✓/✓

Hardware

Price
Med Low Med High VHigh Med

Engineering
Time

Med VHigh High Med Low Low

Does not

 mandate
use of

other tools

to convert
e.g.

Wireshark

x x x ✓ ✓ ✓

V. CONCLUSION

In this paper an introduction to the need for advanced
debugging tools in complex wireless environments has been
given. It has been shown that such tools provide the ability to
debug wireless interfaces which are typical of current trends in
connected hardware. By providing developers with efficient
tools, the time-to-market can be significantly reduced, and
robustness and security increased, thereby providing an edge in
a highly-competitive consumer market.

ACKNOWLEDGMENT

This work was partially supported by the Australian
Government – Department of Industry, Innovation and Science
– Innovation Connections Grant (ICG000408).

REFERENCES

[1] R. Möller, "Ericsson Mobily Report," Ericsson, Stockholm, 2018, pp.16

[2] C. Kolias, G. Kambourakis, A. Stavrou and J. Voas, "DDoS in the IoT:
Mirai and Other Botnets," in Computer, vol. 50, no. 7, pp. 80-84, 2017.
doi: 10.1109/MC.2017.201

[3] V. S. Varadharajan, D. S. Onge, C. Guß and G. Beltrame, "Over-the-Air
Updates for Robotic Swarms," in IEEE Software, vol. 35, no. 2, pp. 44-
50, March/April 2018. doi: 10.1109/MS.2018.111095718

[4] N. Vlajic, D. Zhou and J. Tung, "IoT Cameras and DVRs as DDoS
Reflectors: Pros and Cons from Hacker’s Perspective," 2018 IEEE
International Conference on Industrial Internet (ICII), Seattle, WA, 2018,
pp. 181-187. doi: 10.1109/ICII.2018.00035

[5] C. Sharma and D. N. K. Gondhi, "Communication Protocol Stack for
Constrained IoT Systems," 2018 3rd International Conference On Internet
of Things: Smart Innovation and Usages (IoT-SIU), Bhimtal, 2018, pp. 1-
6.doi: 10.1109/IoT-SIU.2018.8519904

