
Getting Your Medical Devices to Market Faster, at Lower Cost,
and on Schedule

Jerry Krasner, Ph.D., MBA

You only need to do a few things right in your life so long as you don’t do too many

things wrong – Warren Buffet

Introduction:

In 1931 Olaf Stapledon’s book, Last and First Men, told the delightful story about
a Martian invasion of Earth in which the Martians and denizens of Earth were
oblivious to one another.

The invaders from Mars, looking for resources (in particular diamonds), consisted
of a cloud of microorganisms possessing radio telepathy and a distributed
consciousness. They possessed a sophisticated culture, but in their search for
diamonds they looked right past the slow moving and slow communicating
human inhabitants of Earth.

Being a old time warrior of the medical devices industry dating back more than
40 years and more than twenty 510k applications, Stapleton’s story struck a
familiar note when I look at today’s medical devices industry.

Most medical device developments still use Microsoft OSes – notwithstanding
the availability of faster, lower power OSes that have demonstrated a faster time
to market and that developments using these non-MS OSes require fewer
engineers and experience lower design costs. – not to mention the significant
improvement in reliability provided by the non-MS OSes. We see the same
blindness when it comes to commercial versus free Linux and with Open Source
software. Medical device manufacturers are taking these “evangelists” at their
word without any tangible proof. The theory is that commercial OS vendors are
ripping off companies when “free” stuff is available. We will provide data from
actual developments to refute these claims.

Yet, like Stapleton’s slow moving and slow communicating humans, many
medical device developers and their managers remain oblivious to proven
technologies that can enhance their design experiences, create lower costs of
development and provide for better audit trails should they be needed for CDRH
review.

Wireless technologies have been adopted as a major part of patient monitoring,
yet (as demonstrated in year-over-year EMF Surveys of Embedded Developers)
they are seldom integrated into the development process in the most productive
manner. The same can be shown for USB integration and deployment.

In a recently updated paper entitled “Critical Issues Confronting Medical Device
Manufacturers, Their CEOs, CFOs, Managers and Developers”, EMF took the
reader through steps designed to “cover the bases” in order to minimize recalls
and to have documentation to use to defend against a CDRH audit.

In this paper we wish to acquaint medical device manufacturers with currently
available technologies that are used effectively in other vertical marketplaces to
speed up the development process, lower the cost of development and better
enable integration of wireless, USB and very efficient GUI development and
deployment. The advantages of modeling will be discussed.

In this paper we will consider the following:

 Why choosing the OS most suitable to the application can produce
significant savings

 What wireless technologies are being used by medical device developers
– and what technologies are available that can enhance wireless and USB
integration

 How to simplify GUI development and deployment.

Choosing the Most Suitable RTOS

Medical patient monitoring is not a mission critical design – the fastest response
times are measured in milliseconds and critical alarm design can compensate for
any systems failure. Nonetheless it was interesting to see:

1) The most widely used RTOSes did not exhibit the best results in time to
market or design outcomes;

2) Certain RTOSes, e.g., ThreadX and Nucleus – interestingly created by the
same individual - had better time to market, fewer designs completed
behind schedule, and a lower cost of development than the more
established RTOSes (e.g., Windows CE, VxWorks, Integrity, LynxOS) as
well as Linux and Open Source

3) Commercial Linux outperformed Open Source
4) These comparisons have been calculated year-over-year (shared with

subscribers to the EMF Market Intelligence Program - but not published
openly) with the same outcomes, over the period 2007-2013

The unique EMF Executive Dashboard allows us to simultaneously look at
developer responses to those that reported using Microsoft CE, ThreadX (chosen
as a commercial RTOS example), Commercial Linux, Non- Commercial (free)
Linux, and Open Source software.

From these filters we can interrogate the 2013 EMF Survey of Embedded
Developers to determine:

 The number of software developers per project
 Average time from project start to shipment (time to market)
 Percent of developments completed behind schedule – and the delay in

months
 Percent of developments cancelled – and time elapsed before cancellation

From these data we can calculate the average number of developers per project,
the number of developer months lost to behind schedule and the number of
developer months lost to cancellation. From these data we can calculate the total
number of developer months per project. Now we can determine the comparative
total cost of development between commercial RTOSes (Choosing ThreadX and
Windows CE), commercial and free Linux and open source software
developments.

Table I presents these data representing the broad industry (designs across all
vertical markets).

 2013 EMF Survey Data Open Comm
Non-

Comm Microsoft

 All Respondents Ind ave ThreadX Source Linux Linux CE

 Devel time Months - Start to Ship 13.9 12.9 13.2 12.9 15.1 14.3

 % behind schedule 47.0% 36.9% 45.1% 47.5% 46.7% 38.1%

 Months behind 3.8 3.0 3.6 3.1 4.1 4.0

 % cancelled 11.2% 13.4% 10.9% 11.7% 11.2% 11.5%

 Months before cancellation 4.4 4.6 4.4 3.6 4.4 4.4

 SW Developers/project 14.7 6.8 19.0 17.4 22.3 13.3

 Average Developer months/project 204.3 87.7 250.8 224.5 336.7 190.2

 Developer months lost to schedule 26.3 7.5 30.8 25.6 42.7 20.3

Developer months lost to
cancellation 7.2 4.2 9.1 7.3 11.0 6.7

 Total developer months/ project 237.8 99.4 290.8 257.4 390.4 217.2

 At $10,000/developer month

 Average developer cost/project $2,043,300 $877,200 $2,508,000 $2,244,600 $3,367,300 $1,901,900

 Average cost to delay $262,542 $75,276 $308,484 $256,215 $426,978 $202,692

 Average cost to cancellation $72,442 $41,915 $91,124 $73,289 $109,894 $67,298

 Total developer cost/project $2,378,284 $994,391 $2,907,608 $2,574,104 $3,904,173 $2,171,890

Table I: Worldwide Comparative Costs of Development

It is clear from Table I that developers using commercial OSes (ThreadX and
Windows CE) got to market faster, required fewer developers per project, had

lower costs of development and lower costs associated with delays than what
was experienced with Linux, or Open Source developments. Also it has been
clear, year over year, that commercial Linux developments cost less than non-
commercial Linux developments.

Table I makes it clear, nonetheless that developers using RTOSes other than
Microsoft CE create additional savings – in this case the use of CE was twice as
costly as ThreadX.

Since many medial device developments are using ARM processors, we looked
at ARM developments as presented in Table II.

 2013 EMF Survey Data
Open

Source Embedded ARM Microsoft

 ARM Developers ThreadX Software Linux All Users CE

 Devel time Months - Start to Ship 8.8 12.4 12.6 11.9 12.8

 % behind schedule 23.5% 41.0% 37.8% 43.4% 37.2%

 Months behind 2.0 3.5 3.4 3.7 4.0

 % cancelled 7.4% 11.1% 6.0% 9.6% 12.2%

 Months before cancellation 2.3 4.4 4.6 3.9 3.9

 SW Developers/project 5.7 9.4 5.6 6.7 12.7

 Average Developer months/project 50.2 116.6 70.6 79.7 162.6

 Developer months lost to schedule 2.7 13.5 7.2 10.8 18.9

Developer months lost to
cancellation 1.0 4.6 1.5 2.5 6.0

 Total developer months/ project 53.8 134.6 79.3 93.0 187.5

 At $10,000/developer month

 Average developer cost/project $501,600 $1,165,600 $705,600 $797,300 $1,625,600

 Average cost to delay $26,790 $134,890 $71,971 $107,589 $188,976

 Average cost to cancellation $9,701 $45,910 $15,456 $25,085 $60,427

 Total developer cost/project $538,091 $1,346,400 $793,027 $929,973 $1,875,003

Table II: Worldwide Comparative Costs of ARM Developments

Comparing Tables I and II, it is interesting to note that ARM developments are
less costly than those that are industry wide. Yet here we see that embedded
Linux (combining commercial and non-commercial) performs significantly better
than Windows CE ARM developments. ThreadX is still 50% less costly than
embedded Linux.

These results may not sit well with some medical device developers (usually
those who’s living and future are seemingly not predicated on the commercial
success of their products) who will argue to the end that “free” software is
preferred route. It is the fundamental tenet of capitalistic endeavors (sort of a

technology Darwinian clearing house) that such arguments are settled in the
technology marketplace.

So the question arises - why choose an RTOS that offers less attractive TTM and
Cost of development? Perhaps it is because that many developers have not had
access to the data presented herein.

The cost savings in development costs and time-to-market are but the tip of the
iceberg. Being late to market increases development cost, but MORE
SIGNIFICANTLY, being late to market reduces market share, and can make the
difference between a profitable, successful product and an also-ran that loses
money. The cost of being late to market far outweighs the development cost, and
any savings from use of a free RTOS solution. The RTOS may be free but the
total cost of development certainly is not. Relying on the free RTOS can be
“penny wise and pound foolish.”

Model Driven Development (MDD)

Model Driven Development (MDD) is the latest improvement in the level of
abstraction in writing software applications. Software development has moved
from machine language to FORTRAN to C and C++ languages with the use of
compilers, as well as to Java and to the SQL database. As we examine each
step along the development levels of abstraction, we see that the higher levels of
abstraction have offered significantly improved productivity and ease-of-writing
applications. In such, developers can handle increasingly complex developments
without increasing the development work load thereby enabling applications to be
developed faster and less costly than with previous techniques. MDD is also
capable of powerful simulation modeling and trade studies to compare design
choice.

MDD separates the model from the code enabling the developers to work on a
platform independent model. The auto-code generation capability writes the code
according to the underlying OS and processor used which enables rapid
prototyping of product subsystems.

EMF data has clearly shown that the total cost of development can be orders of
magnitude less than acquisition costs in appropriate circumstances when MDD is
employed:

 On time shipment of product – MDD developments ship faster than
comparable developments not using MDD.

 MDD enables effective code reuse.
 Maintaining the expected performance, systems functionality and

features and schedule of the development – Final design results are
closer to pre-design expectations for MDD developments.

 Achieving market windows of opportunity – MDD developments not
only get to market faster, but they can be easily upgraded to meet new
market opportunities by integrating legacy software into new designs
and automatically generating and deploying new code.

 Cost of re-design necessitated by changes in available hardware is
minimal with MDD.

 Reduced project costs by finding problems earlier, when they are
cheaper to fix. Previous research (Defense Systems Management
College – 1993) has shown that after having spent just 15% of the
development budget, 85% of the costs are already baked in. What
costs X to correct in the early stages can cost 10X or more to correct
later.

 Cost of in-field support is more effective because support personnel
can more clearly understand design models and code versus just
source code. MDD minimizes the possibility of product recalls.

 Documentation is automatic. The original developers may have retired
but with MDD all of the documentation and interface information is
retained. Imagine the cost of upgrade if all of the software apps had to
be redone.

 CDRH audits are performed more effectively as the auditor can visually
see the code executing and be able to ascertain that corrections have
been completed. In cases where there has been a recall,

 MDD offers an effective and rapid method of correcting software
errors. In such manufacturers can apply for a new and expedited 510k
rather than having to wait up to 24 months for a new 510k.

Enhancing the Design Process – looking at developmental efficiencies
using wireless protocols, USB enablement and GUI development and
integration

Integrated GUI Development

Thanks to the explosion of opportunities that started in smartphones, GUIs have
become commonplace in medical, consumer, and industrial applications,
prompting the need for advanced tools to simplify their development. Most
embedded system programmers are not LCD specialists and do not want to
program these displays at the lowest level, which involves constructing individual
graphical shapes and objects (“widgets”). Instead, to speed time to market, most
developers use a library of routines that manage the GUI details. Express Logic’s
QUIX development framework allows developers to describe the widgets at a
high level of abstraction. Such libraries help developers to enhance programming
productivity and avoid many errors. GUIX offers developers an advanced UI
framework and rich library of unique widgets tailored to help them construct
whatever GUI they envision. Programmers can call GUIX functions from their C
application programs, and GUIX performs all the necessary drawing functions to

produce a clear, interactive GUI on LCD screens of various sizes and
resolutions.

GUIX is a small-footprint, low-overhead runtime engine and development tool
featuring automatic code generation for embedded systems capable of graphical
display. GUIX simplifies GUI development and targets the ARM 32-bit MCU and
MPU architectures, including Cortex-M3, M4, A8, and A9, in medical devices,
consumer electronics, and industrial control equipment.

Interestingly, GUI designers can create GUIs using GUIX Studio™, the
companion PC-based application that enables WYSIWYG rapid prototyping of

GUI designs (as shown in the Figure).
With GUIX Studio, the designer can
select, drag-and-drop, and resize
images, backgrounds, widgets, and
other elements of a powerful GUI
without having to write a single line of
code. GUIX Studio generates the
code necessary to implement the
exact GUI design constructed on the
PC. The generated code can be
dropped into the application and

executed on the target system.

There is no longer a need for developers to waste time on implementing GUIs
when an effective and easy to integrate means is available. It makes sense that
such a tool can enhance a development’s time-to-market.

Medical Device Developer’s Use of Wireless Protocols

An analysis of data taken from the 2013 EMF Annual Survey of Embedded
Developers enables us to compare wireless choices of medical device
developers with wireless use across the embedded industry.

Tables III and IV present developer responses indicating a comparison between
medical and other embedded developments for “currently designed-in” and for
“plan to use in 2014” developments.

EMF cautions the reader that what developers indicate they “plan to use”
frequently does not match what they actually use in the following year.
Nonetheless, it is interesting to report on what they anticipate using in 2014.

 Currently Designed In Industry Medical

 Bluetooth Classic V2.1 17.6% 35.4%

 RFID 13.4% 29.3%

 802.11g 23.7% 28.0%

 Zigbee 21.8% 24.4%

 802.11b 17.4% 19.5%

 HTTP 17.2% 19.5%

 Bluetooth Low Energy V4.0 6.5% 18.3%

 802.11n 14.5% 17.1%

 GSM 13.8% 15.9%

 802.11a 14.7% 14.6%

 XML 11.1% 14.6%

 IrDA 8.4% 13.4%

 Proprietary 11.7% 13.4%

 3G 18.2% 12.2%

 Bluetooth High Speed V3.0 8.0% 12.2%

 NFC 6.3% 9.8%

 WPA2 9.2% 8.5%

 WPA 7.5% 7.3%

 WEP 6.7% 6.1%

 802.11i 5.9% 4.9%

 4G 6.9% 3.7%

 CDMA 8.6% 3.7%

Table III: Comparative Current Wireless Use

A side by side inspection of Table II shows the preponderance of Bluetooth use
(all versions), WiFi, and Zigbee. We report WiFi separately by protocol, and
Bluetooth by version, rather than cumulative, whereas the ZigBee is reported as
cumulative. since developers seldom use more than one version (e.g., 802.11g
developers wouldn’t also use 802.11n). RFID use was interesting to observe.
However, RFID hais been used predominantly to control inventory and surgical
use rather than for patient monitoring applications.

Of interest is the use of Zigbee by developers. The frequency of use is
comparable between embedded industry use and medical device developments.
Yet tThe 24.4% reported use in the last year is significant however the plan to
use shows that ZigBee use is dropping off and . We say that notwithstanding
feedback from a prominent supplier of both Bluetooth and, WiFi and Zigbee
stacks (Clarinox) that Zigbee sales are dropping while Bluetooth sales continue
to bloom.

 Plan to use in next 12 months Industry Medical

 Bluetooth Classic V2.1 14.2% 28.8%

 Bluetooth Low Energy V4.0 14.2% 28.8%

 802.11g 18.7% 24.7%

 802.11n 15.9% 20.5%

 802.11b 10.7% 19.2%

 RFID 9.2% 17.8%

 Zigbee 14.7% 17.8%

 802.11a 8.2% 13.7%

 HTTP 13.2% 12.3%

 Proprietary 9.2% 12.3%

 Bluetooth High Speed V3.0 7.0% 11.0%

 IrDA 4.5% 9.6%

 NFC 5.2% 9.6%

 3G 11.4% 8.2%

 WPA2 6.5% 8.2%

 GSM 7.7% 6.8%

 WEP 3.2% 6.8%

 XML 7.2% 6.8%

 4G 8.0% 4.1%

 802.11i 3.7% 2.7%

 LTE 4.2% 2.7%

 CDMA 4.0% 1.4%

Table IV: Comparative Anticipated (2014) Wireless Use

Examining Table IV we can see from developer responses the drop in anticipated
Zigbee use which is consistent with what Clarinox has reported to us.

It is interesting to see that Bluetooth use (and anticipated use), as reported in
Figures III and IV seem to be consistent. The EMF takeaway is that Bluetooth
users (for Classic, Low Energy and High Speed) are satisfied with the
performance, cost and associated implementations and will be unlikely to change
to another protocol.

RTOS and other vendors be aware – it is a good investment to integrating and
support Bluetooth as part of your OS offering as a means to enhance the design
experience of your customers and prospects. Bluetooth use among embedded
developers is high and enabling developers to easily integrate it into current
designs. Clarinox, by offering Bluetooth and, WiFi and Zigbee capabilities, has
established partnerships with several prominent RTOS vendors.

Table V presents a listing of criteria deemed most important for selecting
Bluetooth protocol stack.

 Most Important Selection Criteria Industry Medical

 Microprocessor support 42.5% 42.5%

 Reliability 31.5% 40.0%

 Compatibility with our development tools 37.0% 37.5%

 Availability of source code 37.8% 35.0%

 Real time performance 27.6% 35.0%

 Acquisition cost 44.1% 32.5%

 Quality of support 18.1% 32.5%

 Host platform support 22.8% 30.0%

 Includes good development tools 21.3% 27.5%

 Supports easy porting of existing software 8.7% 20.0%

 Memory constraints 13.4% 17.5%

 Compatibility with suppliers and vendors 13.4% 15.0%

 Must be free (for both development and production) 26.8% 12.5%

 Performance on internal evaluation 11.0% 12.5%

 Provides device drivers and/or Board Support Packages 15.0% 12.5%

 Royalty cost (production licenses) 12.6% 12.5%

 Security 10.2% 12.5%

 Customer approved or specified 9.4% 10.0%

 Must be open source 12.6% 10.0%

 Safety certifiable (DO-178B/C, IEC 61508, FDA, etc.) 5.5% 7.5%

 Availability of perpetual license 22.0% 5.0%

 Availability of professional services (porting, integration, or qualification) 13.4% 5.0%

Table V: Reasons for Selecting a Bluetooth Stack

From Table V we can see that the Bluetooth acquisition cost is less important for
medical developers and that they don’t expect any freebies. So look out chip
providers that include a Bluetooth stack with the processor. Developers want
more flexibility and are willing to pay for it. Also, the availability of a perpetual
license is not an issue for medical applications (only 5% report this to be a
concern, compared with 20% for the embedded industry).

Issues of importance to medical device developers are realtime performance,
quality of support (this is why RTOS vendors are better suited to offer an
integrated Bluetooth package), reliability and host platform support. On these
points the robust stack offering from Clarinox with support for multiple RTOS
vendor products is well aligned to the needs of the medical industry.

EMF asked medical device developers what aspects of their protocol software
selection process turned out to be the most disappointing.

Table VI presents their responses which are compared to respondents from the
broad embedded industry.

 Most Disappointing Aspects of Protocol Software Selection

 Industry Medical

 Expectation of better support 45.8% 50.5%

 Better technical solution 45.8% 47.3%

 Product integration 40.6% 47.3%

 Better price 26.3% 23.1%

 Open Source 14.4% 16.5%

 Compatibility with customers and suppliers 20.0% 14.3%

 Vendor reputation 5.2% 4.4%

 Ease of purchasing 7.7% 3.3%

 Corporate standardization 8.5% 3.3%

Table VI : Most Disappointing Aspects of Protocol Selection

Wireless - EMF’s Takeaway:

Of the short range wireless technologies Bluetooth and WiFi are the most
adopted by medical device developers. This gives them both the opportunity to
interact with a large number of existing devices and infrastructure.

WiFi is used for higher data rates and longer distance but is more susceptible to
co-existence issues. Bluetooth caters for lower data rates/shorter distance (than
WiFi, higher data rate/longer distance than RFID) but the technology is less
affected by large amounts of RF transmission within close proximity and the
battery lasts longer.

A key requirement is reliability – and some protocol stack software is more robust
than others. Clarinox is the partner of choice of all the leading RTOS vendors
due to the superior robustness and reliability of the Clarinox Bluetooth and WiFi
stacks. By supporting Clarinox stacks into the specific RTOS, the design
experience is enhanced for medical device developers and it is easier to achieve
better time to market.

Bluetooth from the module or chip vendor will provide minimal standard
functionality – but for anyone that seeks faster pairing, maximized performance
and faster data rates, plus a larger range of applications – then a dedicated stack
vendor is typically preferredrequired.

What medical device developers need to consider when choosing a wireless
technology

 Range – different technology have different range of transmission

 Data rate – how much data needs to be transferred?

 Battery life – is the device battery operated? How long does the battery
need to last

 Latency – how quick does the connection need to be

 Robustness – medical devices cannot afford to require frequent reboot

 Wireless technology standards – is it important to interact with other
devices such as phones or tablets? If so then a standard technology that
is included on those devices should be used

 Regulations – regulations around the use of RF within some medical
environments will be controlled, this level of control may vary with between
different governing bodies (jurisdictions)

 Coexistence – increased radio frequency “traffic” increases the chance of
the RF equivalent of “grid lock” – some technologies are more effected
than other

 Security – privacy and security of data concerns

 Electromagnetic Compatibility (EMC) evaluation requirements for a
number of devices such as active implantable cardiovascular devices that
provide one or more therapies for bradycardia, tachycardia and cardiac
resynchronization.

Medical Device Developer’s Use of USB

Table VII presents, based on the results of the 2013 EMF Survey of Embedded
Developers (667 respondents), the driver interfaces used by medical device
developers compared with the overall embedded industry.

 Driver Interfaces Medical Industry

 USB 63.2% 50.1%

 I2C 62.3% 52.3%

 RS232 (serial) 53.8% 55.2%

 TCP/IP 48.1% 51.6%

 SPI 45.3% 37.9%

 100Mbps Ethernet 44.3% 47.5%

 IPv4 36.8% 37.3%

 CAN 34.0% 33.8%

 10Mbps Ethernet 31.1% 30.9%

 HTTP 31.1% 29.2%

 UDP 24.5% 30.9%

 DHCP 22.6% 20.0%

 DMA 22.6% 16.9%

 Gigabyte Ethernet 21.7% 24.4%

Table VI I: Driver Interfaces Used
In 2013, USB remained the leading choice for driver interface use among
medical device developers, substantially higher than TCP/IP and RS 232 (serial).
The question arises as to whether USB is a better choice from a cost
containment viewpoint. Such factors as time-to-market, number of developers
required per design, cost of delays (behind schedule and cancellations)
contribute to the cost of development. Table VIII presents a development cost
comparison between USB, TCP/IP RS232 and Ethernet.

 Ind ave USB TCP/IP RS232 Ethernet

 Devel time Months 13.8 13.6 13.2 14.1 13.7

 % behind schedule 35.2% 38.1% 38.5% 37.7% 36.9%

 Months behind 4.4 3.2 3.9 4.7 3.8

 % Cancelled 10.0% 9.5% 9.5% 9.7% 9.3%

 Months before cancellation 5.1 4.6 4.6 4.8 4.9

 SW Developers/project 11.4 6 11.6 9.1 12.4

 HW Developers/project 7.4 3.7 5.1 5.7 5.5

 Total Developers/Project 18.8 9.7 16.7 14.8 17.9

 Average Developer months/project 259.4 131.9 220.4 208.7 245.2

 Developer months lost to schedule 29.1 11.8 25.1 26.2 25.1

 Developer months lost to cancellation 9.6 4.2 7.3 6.9 8.2

Total Developer months lost
cancel/delay 38.7 16.1 32.4 33.1 33.3

 Total developer months/ project 298.1 148 252.8 241.8 278.5

 At $10,000/developer month

 Average developer cost/project $2,594,400 $1,319,200 $2,204,400 $2,086,800 $2,452,300

 Average cost to delay $387,054 $160,651 $323,730 $331,150 $332,564

 Total developer cost/project $2,981,454 $1,479,851 $2,528,130 $2,417,950 $2,784,864

 Table VIII: Worldwide Comparisons –USB, TCP/IP, RS232, and Ethernet

USB developments have a cost of development advantage of nearly 67%.

EMF asked responding developers to report on the factor that most impacted
their decision to buy embedded products and tools.

USB developers are significantly more sensitive to value of tools, to ease of use,
and to speed performance. Interestingly, they’re not as interested in
“compatibility”.

Again, intuitively, this makes sense. The cost of tools is a larger fraction of the
project cost, because labor input is lower. Ease of use is important, because
there are half as many developers on the project, compared to industry average.
Compatibility is not as important, because the project tools do not to be
amortized over multiple products. Speed/performance is important, because
(during development) this means less time spent by developers waiting for the
tools.

By providing a range of choices and limiting responses to choosing only four
characteristics, we are able to create a listing of the factors most important in
their decision making process. The result is presented in Table IX.

In general, what FOUR characteristics are the most important to you in buying
embedded products and tools?

 Industry USB

 Price/cost/value of product 66.3% 72.0%

 Ease of use of product 59.2% 65.8%

 Quality and reliability of products 48.5% 51.9%

 Technical support 41.3% 44.0%

 Compatibility of products 43.3% 38.3%

 Speed/performance of products 31.0% 35.4%

 Reputation of supplier/vendor 16.3% 18.9%

 Leading edge technology 16.7% 13.6%

 Ease of dealing with vendors& processes 8.3% 9.5%

 Personal trusted relationship to rep or support people 8.1% 6.6%

 Sales service and support 6.5% 5.3%

 Other (please specify) 2.5% 1.6%

Table IX: Most Important Characteristics used in Buying Decision Making.

